
Pr $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \quad$ Propyl
Bu $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ Buty
$\quad \stackrel{\mathrm{Pr}}{ } \mathrm{CH}_{3} \mathrm{CHCH}_{3}$ isopropy
s.Bu $\mathrm{CH}_{3} \mathrm{CHHCH}_{2} \mathrm{CH}_{3}$ secounyl Bs
rBu $\mathrm{CH}_{\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}}$ isobuyyl

Allyl

$\mathrm{Ph}\left(\mathrm{C}_{0} \mathrm{H}_{-}\right) \mathbb{S}^{Y^{3}}$ Phenyl Vinyl
(iii) nucleus of one atom and electron of other atom L.e., $\mathrm{N}_{\mathrm{A}}-\mathrm{e}_{\mathrm{N}}, \mathrm{N}_{\mathrm{n}}-\mathrm{e}_{\mathrm{A}}$.
Similarly repulsive forces arise between
(i) electrons of two atoms like $\mathrm{e}_{\mathrm{n}}-\mathrm{e}_{\mathrm{n}}$.
(ii) nuclet of two atoms $\mathrm{N}_{\mathrm{A}}-\mathrm{N}_{\mathrm{B}}$.

Attractive forces tend to bring the two
atoms close to each other whereas repul
forces tend to push them apart (Fig. 4.7].

Fig. 4.7 Forces of atriaction and depulssio
the formation of H_{2} molecule.
Experimentally it has been found that the magnitude of new attractive force is more than the new repulsive forces. As a result, two atoms approach each other and potential energy decreases. Ulemately a stage
reached where the net force of attractio balances the force of repulsion and system acquires minimum energy. At this stage two
hydrogen atoms are sald to be bonded together to form a stable molecule having the bond length of 74 pm .
Since the energy gets released when the bond is formed between two hydrogen atoms, the hydrogen molecule is morestable than that of isolated hydrogen atoms. The enerdy so
released is called as bond enthalpy, which is corresponding to minimum in the curve corresponding to minimum in the curve
depicted in Fig. 4.8 . Conversely, $435,8 \mathrm{~kJ}$ of energy is required to dissoclate one mole of H_{2} molecule.
$\mathrm{H}_{3}(\mathrm{l})+435.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{H}(\mathrm{l})$

Fig. 4.s The potential energy curve for the Jormation of $H_{\text {, molecule as as a function of }}^{\text {internivelear disfarnce of the } H \text { atoms. The }}$ internimecar distance of the H catons. The
minimumn in the curve corresponds to the most stable state of H_{x}
4.5.1 Orbital Overlap Concept

In the formation of hydrogen molecule, there is a minimum energy state when two hydrogen toms are so near that their atomic orbitals merging of atomic orbitals is called overlapping of atomic orbitals which results in the pairing of electrons. The extent of overlap decides the strength of a covalent bond. In general, greater the overlap the stronger is the bond formed between two atoms. Therefore, according to
orbital overlap concept, the formation of a cowalent bond between two atoms results by pairing of electrons present in the valence shell having opposite spins.

- NOMENCLATURE

Mainly three systems are adopted for maming an organic compound -
(i) Common names or Trivial system
(ii) Derived system
(ii) IUPAC system or Jenewa system

Trivial System :Initially organic compounds are ramed on the basis of source from which they were oblained for

S. No.	Organic Compound	Trivial Name	Source
1	CH, OH	Wood spirit or Methyl spirit	Obtained by destructive distilation of wood
2	$\mathrm{NH}_{2} \mathrm{CONH}_{2}$	Urea	Obtained from urine
3	CH_{4}	Marsh gas (fire damp)	It was produced in marshy places
4	$\mathrm{CH}_{3} \mathrm{COOH}$	Vinegar	Obtained from Acetum -i.e. Vinegar
5	$\begin{aligned} & \mathrm{COOH} \\ & 1 \mathrm{COOH} \\ & \end{aligned}$	Oxalicacid	Obtained from oxalis plant
6	HCOOH	Formic acid	Obtained from formicus [Red ant]
7		Lactic achd	Obtained from sour milk
8	$\begin{aligned} & \mathrm{CH}_{2}-\mathrm{COOH} \\ & \mathrm{CH}[\mathrm{OH}] \mathrm{COOH} \end{aligned}$	Malic acid	Obtaied from apples
9	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{COOH}$	Butyric acid	Obtained from butter
10	$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }_{4} \mathrm{COOH}$	Caprole acld	Obtained from goats

Gases

