
Qt	android	app	example

http://gluvoob.com/c3?utm_term=qt+android+app+example

Qt	apps	examples.	Qt	mobile	app	example.	Qt	widget	application	example.	Qt	console	app	example.

A	mobile	application	designed	for	use	on	devices	with	the	Google	Android	platform.	Android	apps	are	available	from	the	Google	Play	Store	(formerly	known	as	Android	Market),	Amazon	Appstore,	and	various	Android	app	websites,	and	apps	can	run	on	Android	smartphones,	tablets,	Google	TV,	and	other	devices.	As	with	Apple	and	its	apps	in	the	Apple
App	Store,	Google	encourages	developers	to	develop	their	own	Android	apps.	While	many	Android	apps	are	free	to	download,	users	can	also	purchase	premium	apps,	with	the	latter's	revenue	split	between	Google	(30%)	and	the	software	developer	(70%).	In	addition,	some	Android	apps	use	the	freemium	business	model,	whereby	the	app	developer	can
monetize	free	apps	using	Google's	in-app	billing	feature.	Porting	to	Android	Deploying	Android	Applications	©	2022	Qt	Company	Ltd.	The	documentation	contained	herein	is	the	property	of	their	respective	owners.	The	documentation	provided	here	is	licensed	under	the	GNU	Free	Documentation	License	version	1.3,	published	by	the	Free	Software
Foundation.	Qt	and	its	logo	-	The	Qt	Company	Ltd.	trademarks	in	Finland	and/or	other	countries	of	the	world.	All	other	trademarks	are	the	property	of	their	respective	owners.	This	guide	explains	how	to	deploy	cross-platform	applications	built	with	Qt	(Qt	Widgets	or	Qt	Quick/QML)	to	Android	mobile	phones	or	tablets.	This	article	uses	Qt	Creator
running	on	Windows	as	the	deployment	tool.	Android	is	a	mobile	operating	system	based	on	a	modified	version	of	the	Linux	kernel	and	others...	This	tutorial	describes	how	to	use	Qt	Creator	to	create	Qt	Quick	applications	for	Android	and	Android	devices.	on	iOS	using	Qt	6	as	the	minimum	version	of	Qt	and	CMake	as	the	build	system.	We	are
implementing	a	Qt	Quick	application	that	accelerates	an	SVG	(Scalable	Vector	Graphics)	image	based	on	changing	accelerometer	values.	Note:A	mobile	application	developed	for	use	on	devices	with	the	Google	Android	platform.	Android	apps	are	available	on	Google	Play	Store	(formerly	known	as	Android	Market),	Amazon	Appstore,	and	various
Android	app	websites,	and	apps	run	on	Android	smartphones,	tablets,	Google	TV,	and	other	devices.	As	with	Apple	and	its	Apple	App	Store	apps,	Google	encourages	developers	to	create	their	own	Android	apps.	While	many	Android	apps	are	free	to	download,	users	can	also	purchase	premium	apps,	with	revenue	from	these	apps	split	between	Google
(30%)	and	software	developers	(70%).	In	addition,	some	Android	apps	follow	a	freemium	business	model,	where	the	app	developer	can	earn	revenue	from	free	apps	through	the	Google	in-app	billing	feature.	Porting	to	Android	Deploying	Android	apps	©	2022	The	Qt	Company	Ltd.	The	documentation	contained	herein	is	copyrighted	by	their	respective
owners.	The	documentation	provided	here	is	licensed	under	the	terms	of	the	GNU	Free	Documentation	License	version	1.3	as	published	by	the	Free	Software	Foundation.	Qt	and	its	logo	are	trademarks	of	The	Qt	Company	Ltd.	in	Finland	and/or	other	countries	around	the	world.	All	other	trademarks	are	the	property	of	their	respective	owners.	This
tutorial	explains	how	to	deploy	cross-platform	applications	(Qt	Widgets	or	Qt	Quick/QML)	built	with	Qt	to	Android	mobile	phones	or	tablets.	This	article	uses	Qt	Creator	running	on	a	Windows	operating	system	as	the	deployment	tool.	Android	is	a	mobile	operating	system	based	on	a	modified	version	of	the	Linux	kernel	and	more...	This	tutorial
describes	how	to	use	Qt	Creator	to	create	Qt	Quick	apps	for	Android	and	Android	iOS	devices	with	Qt	6	as	the	minimum	version	of	Qt	and	CMake	as	the	build	system.	We	implement	a	Qt	Quick	application	that	accelerates	an	SVG	(Scalable	Vector	Graphics)	image	based	on	changing	accelerometer	values.	Note:You	must	have	the	Qt	Sensors	module
installed	from	Qt	6.2	or	later	to	follow	this	tutorial.	Setting	up	the	development	environment	To	build	an	application	and	run	it	on	a	mobile	device,	you	need	to	set	up	a	development	environment	for	the	device's	platform	and	establish	a	connection	between	Qt	Creator	and	the	mobile	device.	To	develop	for	Android	devices,	you	must	install	Qt	for
Android	and	set	up	your	development	environment	as	described	in	Connecting	Android	Devices.	To	develop	for	iOS	devices,	you	need	to	install	Xcode	and	use	it	to	set	up	the	device.	To	do	this,	you	need	an	Apple	developer	account	and	a	certificate	for	the	iOS	Developer	Program,	which	you	can	obtain	from	Apple.	For	more	information,	see	Connecting
an	iOS	device.	Create	a	project	Choose	File	>	New	Project	>	Application	(Qt)	>	Quick	Qt	Application.	Click	Choose	to	open	the	Project	Location	dialog	box.	In	the	Name	field,	enter	a	name	for	the	application.	When	naming	your	own	projects,	remember	that	you	can't	easily	rename	them	later.	In	the	Create	in	field,	enter	the	path	to	the	project	files.
You	can	easily	move	project	folders	later.	Choose	Next	(or	Continue	on	macOS)	to	open	the	Detect	Build	System	dialog	box.	In	the	Build	System	field,	select	CMake	as	the	build	system	you	want	to	use	to	build	and	run	the	project.	Note.	If	you	decide	to	use	qmake,	the	project	setup	instructions	do	not	apply.	Click	Next	to	open	the	Define	Project	Details
dialog	box.	In	the	Minimum	required	Qt	version	field,	select	Qt	6.2.	Select	Next	to	open	the	Translation	File	dialog	box.	Click	Next	to	use	the	default	settings	and	open	the	Specify	Selection	dialog	box.	Select	Qt	6.2	or	higher	for	the	platforms	you	want	to	build	the	application	for.	If	you	want	to	create	applications	for	mobile	devices,	you	can	also	choose
from	Android	and	iOS	packages.	Note.	The	list	shows	the	preferences	you	specify	in	Edit	>	Preferences	>	Preferences	(on	Windows	and	Linux)	or	Qt	Creator	>	Preferences	>	Preferences	(on	macOS).	For	more	information,	see	Adding	Kits.	Select	NextProject	management	window.	Review	the	project	settings	and	select	Done	(or	Done	on	macOS)	to
create	the	project.	For	more	information	on	omitted	options	and	other	available	wizard	templates,	see	Creating	Quick	Qt	Applications.	Adding	images	as	assets	The	main	application	window	displays	a	bubble	SVG	image	that	moves	around	the	screen	as	you	tilt	your	device.	We	use	Bluebubble.svg	for	this	tutorial,	but	you	can	use	any	other	image	or
component	instead.	In	order	for	an	image	to	be	displayed	at	application	startup,	you	must	specify	it	as	a	resource	in	the	RESOURCES	section	of	the	CMakeLists.txt	file	that	the	wizard	created	for	you:	.sv	Creating	the	main	source	of	the	Accelbubble	view:	Image	{	id	:	bubble	source:	"Bluebubble.svg"	smooth:	true	Then	we	add	a	custom	property	to	set
the	image	relative	to	the	width	and	height	of	the	main	window:	real	centerX	property:	mainWindow	.width	/	2	real	centerY	property:	mainWindow.height	/	2	real	bubbleCenter	property:	bubble.width	/	2	x:	centerX	-	bubbleCenter	y:	centerY	-	bubbleCenter	Now	we	want	to	add	code	to	move	the	bubble	based	on	accelerometer	sensor	value.	First	we	add
the	following	import	command:	Then	we	add	the	Accelerometer	component	with	the	required	properties:	Accelerometer	{	id:	accel	dataRate:	100	active:true	Then	we	add	the	following	JavaScript	functions	that	calculate	the	x	and	y	coordinates	of	the	bubble	based	on	the	current	accelerometer	values:	function	calcPitch(x,y,z)	{	return	-Math.atan2(y,
Math.hypot(x,	z))	*	mainWindow.radians_to_	degrees;	}	function	calcRoll(x,y,z)	{	return	-Math.atan2(x,	Math.hypot(y,z))	*	mainWindow.radians_to_degrees;	}	We	added	the	following	JavaScript	code	to	the	onReadingChanged	signal	of	the	Accelerometer	component	so	that	the	bubble	moves	when	the	accelerometerchange:	onReadingChanged:	{	var
newX	=	(bubble.x	+	calcRoll(accel.reading.x,	accel.reading.y,	accel.reading.z)	*	.1)	var	newY	=	(bubble.y	-	calcPitch(accel.reading)	.x,	accel.reading.y,	accel.reading.z)	*	.1)	if	(isNaN(newX)	||	isNaN(newY))	return;	if	(newX	<	0)	newX	=	0	if	(newX	>	mainWindow.width	-	bubble.width)	newX	=	mainWindow.width	-	bubble.width	if	(newY	<	18)	newY	=
18	if	(newY	>	mainWindow.height	-	bubble.height)	newY	=	mainWindow.height	-	bubble.height	bubble.x	=	newX	bubble.y	=	newY	}	We	want	to	make	sure	that	the	position	of	the	bubble	is	always	within	the	limits	of	the	screen.	If	the	accelerometer	returns	a	non-number	(NaN)	value,	the	value	is	ignored	and	the	bubble's	position	is	not	updated.	We'll
add	a	SmoothedAnimation	behavior	to	the	bubble's	x	and	y	properties	to	make	its	movement	appear	smoother.	Lock	device	orientation	By	default,	the	device	display	rotates	when	the	device	orientation	changes	from	portrait	to	landscape.	In	this	example,	it	would	be	better	if	the	screen	orientation	was	fixed.	To	lock	portrait	or	landscape	orientation	on
an	Android	device,	specify	it	in	the	AndroidManifest.xml	file	that	you	can	generate	in	Qt	Creator.	For	more	information,	see	Editing	Manifest	Files.	To	generate	and	use	the	manifest	file,	you	need	to	specify	the	android	package	source	directory	QT_ANDROID_PACKAGE_SOURCE_DIR	in	CMakeLists.txt:	set_property(TARGET	appaccelbubble	APPEND
PROPERTY	QT_ANDROID_PACKAGE_SOURCE_DIR	because	our	android	version	must	be	older	than	C.1.CMAKE_CURRENT_S.	qt_add_executable	statement	one	Add	completion	action:	(appaccelbubble	main.cpp	MANUAL_FINALIZATION)	We	also	need	to	add	the	qt_finalize_executable	function:	qt_finalize_executable(appaccelbubble)	On	iOS	you	can
lock	the	orientation	of	the	device	in	the	info	list.p	CMakeLists.txt	file	as	the	value	of	the	MACOSX_BUNDLE_INFO_PLIST	variable:	set_target_properties(appaccelbubble	PROPERTIESmy.example.com	macosx_bundle_bundle_version	${project_version}	macosx_bundle_short_version_string	${project_version_major}.
${project_version_minor}macosx_bunle_info_plist	"${cmake_current_source_dir}/info.plist"	macosx_	specifying	dependencies	in	the	project	file.	Select	Projects	and	update	the	CMake	configuration	with	the	following	information	about	the	Qt	module:	Sensors,	Svg,	Xml.	The	CMakeLists.txt	file	must	contain	the	following	entries	that	instruct	CMake	to
search	for	the	Qt	installation	and	import	the	Qt	sensors,	Qt	SVG,	and	Qt	XML	modules	required	by	the	application:	find_package(Qt6	6.2	COMPONENTS	Quick	Sensors	REQUIRED	Svg	Xml)	Qt	file	modules	must	be	added	to	the	target	list	link	libraries.	target_link_libraries	tells	CMake	that	the	executable	accelbubble	uses	the	Qt	Sensors,	Qt	SVG,	and
Qt	XML	modules	by	referencing	the	targets	imported	by	calling	the	find_package()	method	above.	It	adds	the	necessary	arguments	to	the	linker	and	ensures	that	the	appropriate	include	directories	and	compiler	definitions	are	passed	to	the	C++	compiler.	target_link_libraries(appaccelbubble	PRIVATE	Qt6::Quick	Qt6::Sensors	Qt6::Svg	Qt6::Xml)	After
adding	the	dependencies,	select	Build	>	Run	CMake	to	apply	the	configuration	changes.	For	more	information	about	the	CMakeLists.txt	file,	see	Introduction	to	CMake.	Launching	the	application	You	can	now	deploy	the	application	to	your	device:	Enable	USB	debugging	on	an	Android	device	or	developer	mode	on	an	iOS	device.	Connect	the	device	to
the	development	computer.	If	you're	running	Android	4.2.2,	you	need	to	verify	the	connection	to	allow	USB	debugging	from	your	computer.	To	avoid	such	prompts	every	time	you	connect	a	device,	select	the	Always	allow	from	this	computer	check	box,	and	then	select	OK.	Press	Ctrl+R	to	launch	the	app	on	your	device.	Files:
accelbubble/Bluebubble.svgaccelbubble/main.qml	accelbubble/main.qml

