
	

Continue

https://feedproxy.google.com/~r/skout/mBVl/~3/BvfzZFkJO3s/uplcv?utm_term=a+perfectly+inelastic+demand+curve


A	perfectly	inelastic	demand	curve

Organized	collection	of	data	This	article	is	about	the	computing	concept.	For	instances	of	the	general	concept,	see	Lists	of	databases.	An	SQL	select	statement	and	its	result	In	computing,	a	database	is	an	organized	collection	of	data	stored	and	accessed	electronically	from	a	computer	system.	Where	databases	are	more	complex	they	are	often
developed	using	formal	design	and	modeling	techniques.	The	database	management	system	(DBMS)	is	the	software	that	interacts	with	end	users,	applications,	and	the	database	itself	to	capture	and	analyze	the	data.	The	DBMS	software	additionally	encompasses	the	core	facilities	provided	to	administer	the	database.	The	sum	total	of	the	database,	the
DBMS	and	the	associated	applications	can	be	referred	to	as	a	"database	system".	Often	the	term	"database"	is	also	used	loosely	to	refer	to	any	of	the	DBMS,	the	database	system	or	an	application	associated	with	the	database.	Computer	scientists	may	classify	database-management	systems	according	to	the	database	models	that	they	support.
Relational	databases	became	dominant	in	the	1980s.	These	model	data	as	rows	and	columns	in	a	series	of	tables,	and	the	vast	majority	use	SQL	for	writing	and	querying	data.	In	the	2000s,	non-relational	databases	became	popular,	referred	to	as	NoSQL	because	they	use	different	query	languages.	Terminology	and	overview	Formally,	a	"database"
refers	to	a	set	of	related	data	and	the	way	it	is	organized.	Access	to	this	data	is	usually	provided	by	a	"database	management	system"	(DBMS)	consisting	of	an	integrated	set	of	computer	software	that	allows	users	to	interact	with	one	or	more	databases	and	provides	access	to	all	of	the	data	contained	in	the	database	(although	restrictions	may	exist
that	limit	access	to	particular	data).	The	DBMS	provides	various	functions	that	allow	entry,	storage	and	retrieval	of	large	quantities	of	information	and	provides	ways	to	manage	how	that	information	is	organized.	Because	of	the	close	relationship	between	them,	the	term	"database"	is	often	used	casually	to	refer	to	both	a	database	and	the	DBMS	used
to	manipulate	it.	Outside	the	world	of	professional	information	technology,	the	term	database	is	often	used	to	refer	to	any	collection	of	related	data	(such	as	a	spreadsheet	or	a	card	index)	as	size	and	usage	requirements	typically	necessitate	use	of	a	database	management	system.[1]	Existing	DBMSs	provide	various	functions	that	allow	management	of
a	database	and	its	data	which	can	be	classified	into	four	main	functional	groups:	Data	definition	–	Creation,	modification	and	removal	of	definitions	that	define	the	organization	of	the	data.	Update	–	Insertion,	modification,	and	deletion	of	the	actual	data.[2]	Retrieval	–	Providing	information	in	a	form	directly	usable	or	for	further	processing	by	other
applications.	The	retrieved	data	may	be	made	available	in	a	form	basically	the	same	as	it	is	stored	in	the	database	or	in	a	new	form	obtained	by	altering	or	combining	existing	data	from	the	database.[3]	Administration	–	Registering	and	monitoring	users,	enforcing	data	security,	monitoring	performance,	maintaining	data	integrity,	dealing	with
concurrency	control,	and	recovering	information	that	has	been	corrupted	by	some	event	such	as	an	unexpected	system	failure.[4]	Both	a	database	and	its	DBMS	conform	to	the	principles	of	a	particular	database	model.[5]	"Database	system"	refers	collectively	to	the	database	model,	database	management	system,	and	database.[6]	Physically,	database
servers	are	dedicated	computers	that	hold	the	actual	databases	and	run	only	the	DBMS	and	related	software.	Database	servers	are	usually	multiprocessor	computers,	with	generous	memory	and	RAID	disk	arrays	used	for	stable	storage.	Hardware	database	accelerators,	connected	to	one	or	more	servers	via	a	high-speed	channel,	are	also	used	in	large
volume	transaction	processing	environments.	DBMSs	are	found	at	the	heart	of	most	database	applications.	DBMSs	may	be	built	around	a	custom	multitasking	kernel	with	built-in	networking	support,	but	modern	DBMSs	typically	rely	on	a	standard	operating	system	to	provide	these	functions.[citation	needed]	Since	DBMSs	comprise	a	significant
market,	computer	and	storage	vendors	often	take	into	account	DBMS	requirements	in	their	own	development	plans.[7]	Databases	and	DBMSs	can	be	categorized	according	to	the	database	model(s)	that	they	support	(such	as	relational	or	XML),	the	type(s)	of	computer	they	run	on	(from	a	server	cluster	to	a	mobile	phone),	the	query	language(s)	used
to	access	the	database	(such	as	SQL	or	XQuery),	and	their	internal	engineering,	which	affects	performance,	scalability,	resilience,	and	security.	History	The	sizes,	capabilities,	and	performance	of	databases	and	their	respective	DBMSs	have	grown	in	orders	of	magnitude.	These	performance	increases	were	enabled	by	the	technology	progress	in	the
areas	of	processors,	computer	memory,	computer	storage,	and	computer	networks.	The	concept	of	a	database	was	made	possible	by	the	emergence	of	direct	access	storage	media	such	as	magnetic	disks,	which	became	widely	available	in	the	mid	1960s;	earlier	systems	relied	on	sequential	storage	of	data	on	magnetic	tape.	The	subsequent
development	of	database	technology	can	be	divided	into	three	eras	based	on	data	model	or	structure:	navigational,[8]	SQL/relational,	and	post-relational.	The	two	main	early	navigational	data	models	were	the	hierarchical	model	and	the	CODASYL	model	(network	model).	These	were	characterized	by	the	use	of	pointers	(often	physical	disk	addresses)
to	follow	relationships	from	one	record	to	another.	The	relational	model,	first	proposed	in	1970	by	Edgar	F.	Codd,	departed	from	this	tradition	by	insisting	that	applications	should	search	for	data	by	content,	rather	than	by	following	links.	The	relational	model	employs	sets	of	ledger-style	tables,	each	used	for	a	different	type	of	entity.	Only	in	the	mid-
1980s	did	computing	hardware	become	powerful	enough	to	allow	the	wide	deployment	of	relational	systems	(DBMSs	plus	applications).	By	the	early	1990s,	however,	relational	systems	dominated	in	all	large-scale	data	processing	applications,	and	as	of	2018[update]	they	remain	dominant:	IBM	DB2,	Oracle,	MySQL,	and	Microsoft	SQL	Server	are	the
most	searched	DBMS.[9]	The	dominant	database	language,	standardised	SQL	for	the	relational	model,	has	influenced	database	languages	for	other	data	models.[citation	needed]	Object	databases	were	developed	in	the	1980s	to	overcome	the	inconvenience	of	object–relational	impedance	mismatch,	which	led	to	the	coining	of	the	term	"post-relational"
and	also	the	development	of	hybrid	object–relational	databases.	The	next	generation	of	post-relational	databases	in	the	late	2000s	became	known	as	NoSQL	databases,	introducing	fast	key–value	stores	and	document-oriented	databases.	A	competing	"next	generation"	known	as	NewSQL	databases	attempted	new	implementations	that	retained	the
relational/SQL	model	while	aiming	to	match	the	high	performance	of	NoSQL	compared	to	commercially	available	relational	DBMSs.	1960s,	navigational	DBMS	Further	information:	Navigational	database	Basic	structure	of	navigational	CODASYL	database	model	The	introduction	of	the	term	database	coincided	with	the	availability	of	direct-access
storage	(disks	and	drums)	from	the	mid-1960s	onwards.	The	term	represented	a	contrast	with	the	tape-based	systems	of	the	past,	allowing	shared	interactive	use	rather	than	daily	batch	processing.	The	Oxford	English	Dictionary	cites	a	1962	report	by	the	System	Development	Corporation	of	California	as	the	first	to	use	the	term	"data-base"	in	a
specific	technical	sense.[10]	As	computers	grew	in	speed	and	capability,	a	number	of	general-purpose	database	systems	emerged;	by	the	mid-1960s	a	number	of	such	systems	had	come	into	commercial	use.	Interest	in	a	standard	began	to	grow,	and	Charles	Bachman,	author	of	one	such	product,	the	Integrated	Data	Store	(IDS),	founded	the	Database
Task	Group	within	CODASYL,	the	group	responsible	for	the	creation	and	standardization	of	COBOL.	In	1971,	the	Database	Task	Group	delivered	their	standard,	which	generally	became	known	as	the	CODASYL	approach,	and	soon	a	number	of	commercial	products	based	on	this	approach	entered	the	market.	The	CODASYL	approach	offered
applications	the	ability	to	navigate	around	a	linked	data	set	which	was	formed	into	a	large	network.	Applications	could	find	records	by	one	of	three	methods:	Use	of	a	primary	key	(known	as	a	CALC	key,	typically	implemented	by	hashing)	Navigating	relationships	(called	sets)	from	one	record	to	another	Scanning	all	the	records	in	a	sequential	order
Later	systems	added	B-trees	to	provide	alternate	access	paths.	Many	CODASYL	databases	also	added	a	declarative	query	language	for	end	users	(as	distinct	from	the	navigational	API).	However	CODASYL	databases	were	complex	and	required	significant	training	and	effort	to	produce	useful	applications.	IBM	also	had	their	own	DBMS	in	1966,	known
as	Information	Management	System	(IMS).	IMS	was	a	development	of	software	written	for	the	Apollo	program	on	the	System/360.	IMS	was	generally	similar	in	concept	to	CODASYL,	but	used	a	strict	hierarchy	for	its	model	of	data	navigation	instead	of	CODASYL's	network	model.	Both	concepts	later	became	known	as	navigational	databases	due	to	the
way	data	was	accessed:	the	term	was	popularized	by	Bachman's	1973	Turing	Award	presentation	The	Programmer	as	Navigator.	IMS	is	classified	by	IBM	as	a	hierarchical	database.	IDMS	and	Cincom	Systems'	TOTAL	database	are	classified	as	network	databases.	IMS	remains	in	use	as	of	2014[update].[11]	1970s,	relational	DBMS	Edgar	F.	Codd
worked	at	IBM	in	San	Jose,	California,	in	one	of	their	offshoot	offices	that	was	primarily	involved	in	the	development	of	hard	disk	systems.	He	was	unhappy	with	the	navigational	model	of	the	CODASYL	approach,	notably	the	lack	of	a	"search"	facility.	In	1970,	he	wrote	a	number	of	papers	that	outlined	a	new	approach	to	database	construction	that
eventually	culminated	in	the	groundbreaking	A	Relational	Model	of	Data	for	Large	Shared	Data	Banks.[12]	In	this	paper,	he	described	a	new	system	for	storing	and	working	with	large	databases.	Instead	of	records	being	stored	in	some	sort	of	linked	list	of	free-form	records	as	in	CODASYL,	Codd's	idea	was	to	organize	the	data	as	a	number	of	"tables",
each	table	being	used	for	a	different	type	of	entity.	Each	table	would	contain	a	fixed	number	of	columns	containing	the	attributes	of	the	entity.	One	or	more	columns	of	each	table	were	designated	as	a	primary	key	by	which	the	rows	of	the	table	could	be	uniquely	identified;	cross-references	between	tables	always	used	these	primary	keys,	rather	than
disk	addresses,	and	queries	would	join	tables	based	on	these	key	relationships,	using	a	set	of	operations	based	on	the	mathematical	system	of	relational	calculus	(from	which	the	model	takes	its	name).	Splitting	the	data	into	a	set	of	normalized	tables	(or	relations)	aimed	to	ensure	that	each	"fact"	was	only	stored	once,	thus	simplifying	update
operations.	Virtual	tables	called	views	could	present	the	data	in	different	ways	for	different	users,	but	views	could	not	be	directly	updated.	Codd	used	mathematical	terms	to	define	the	model:	relations,	tuples,	and	domains	rather	than	tables,	rows,	and	columns.	The	terminology	that	is	now	familiar	came	from	early	implementations.	Codd	would	later
criticize	the	tendency	for	practical	implementations	to	depart	from	the	mathematical	foundations	on	which	the	model	was	based.	In	the	relational	model,	records	are	"linked"	using	virtual	keys	not	stored	in	the	database	but	defined	as	needed	between	the	data	contained	in	the	records.	The	use	of	primary	keys	(user-oriented	identifiers)	to	represent
cross-table	relationships,	rather	than	disk	addresses,	had	two	primary	motivations.	From	an	engineering	perspective,	it	enabled	tables	to	be	relocated	and	resized	without	expensive	database	reorganization.	But	Codd	was	more	interested	in	the	difference	in	semantics:	the	use	of	explicit	identifiers	made	it	easier	to	define	update	operations	with	clean
mathematical	definitions,	and	it	also	enabled	query	operations	to	be	defined	in	terms	of	the	established	discipline	of	first-order	predicate	calculus;	because	these	operations	have	clean	mathematical	properties,	it	becomes	possible	to	rewrite	queries	in	provably	correct	ways,	which	is	the	basis	of	query	optimization.	There	is	no	loss	of	expressiveness
compared	with	the	hierarchic	or	network	models,	though	the	connections	between	tables	are	no	longer	so	explicit.	In	the	hierarchic	and	network	models,	records	were	allowed	to	have	a	complex	internal	structure.	For	example,	the	salary	history	of	an	employee	might	be	represented	as	a	"repeating	group"	within	the	employee	record.	In	the	relational
model,	the	process	of	normalization	led	to	such	internal	structures	being	replaced	by	data	held	in	multiple	tables,	connected	only	by	logical	keys.	For	instance,	a	common	use	of	a	database	system	is	to	track	information	about	users,	their	name,	login	information,	various	addresses	and	phone	numbers.	In	the	navigational	approach,	all	of	this	data
would	be	placed	in	a	single	variable-length	record.	In	the	relational	approach,	the	data	would	be	normalized	into	a	user	table,	an	address	table	and	a	phone	number	table	(for	instance).	Records	would	be	created	in	these	optional	tables	only	if	the	address	or	phone	numbers	were	actually	provided.	As	well	as	identifying	rows/records	using	logical
identifiers	rather	than	disk	addresses,	Codd	changed	the	way	in	which	applications	assembled	data	from	multiple	records.	Rather	than	requiring	applications	to	gather	data	one	record	at	a	time	by	navigating	the	links,	they	would	use	a	declarative	query	language	that	expressed	what	data	was	required,	rather	than	the	access	path	by	which	it	should
be	found.	Finding	an	efficient	access	path	to	the	data	became	the	responsibility	of	the	database	management	system,	rather	than	the	application	programmer.	This	process,	called	query	optimization,	depended	on	the	fact	that	queries	were	expressed	in	terms	of	mathematical	logic.	Codd's	paper	was	picked	up	by	two	people	at	Berkeley,	Eugene	Wong
and	Michael	Stonebraker.	They	started	a	project	known	as	INGRES	using	funding	that	had	already	been	allocated	for	a	geographical	database	project	and	student	programmers	to	produce	code.	Beginning	in	1973,	INGRES	delivered	its	first	test	products	which	were	generally	ready	for	widespread	use	in	1979.	INGRES	was	similar	to	System	R	in	a
number	of	ways,	including	the	use	of	a	"language"	for	data	access,	known	as	QUEL.	Over	time,	INGRES	moved	to	the	emerging	SQL	standard.	IBM	itself	did	one	test	implementation	of	the	relational	model,	PRTV,	and	a	production	one,	Business	System	12,	both	now	discontinued.	Honeywell	wrote	MRDS	for	Multics,	and	now	there	are	two	new
implementations:	Alphora	Dataphor	and	Rel.	Most	other	DBMS	implementations	usually	called	relational	are	actually	SQL	DBMSs.	In	1970,	the	University	of	Michigan	began	development	of	the	MICRO	Information	Management	System[13]	based	on	D.L.	Childs'	Set-Theoretic	Data	model.[14][15][16]	MICRO	was	used	to	manage	very	large	data	sets	by
the	US	Department	of	Labor,	the	U.S.	Environmental	Protection	Agency,	and	researchers	from	the	University	of	Alberta,	the	University	of	Michigan,	and	Wayne	State	University.	It	ran	on	IBM	mainframe	computers	using	the	Michigan	Terminal	System.[17]	The	system	remained	in	production	until	1998.	Integrated	approach	Main	article:	Database
machine	In	the	1970s	and	1980s,	attempts	were	made	to	build	database	systems	with	integrated	hardware	and	software.	The	underlying	philosophy	was	that	such	integration	would	provide	higher	performance	at	a	lower	cost.	Examples	were	IBM	System/38,	the	early	offering	of	Teradata,	and	the	Britton	Lee,	Inc.	database	machine.	Another	approach
to	hardware	support	for	database	management	was	ICL's	CAFS	accelerator,	a	hardware	disk	controller	with	programmable	search	capabilities.	In	the	long	term,	these	efforts	were	generally	unsuccessful	because	specialized	database	machines	could	not	keep	pace	with	the	rapid	development	and	progress	of	general-purpose	computers.	Thus	most
database	systems	nowadays	are	software	systems	running	on	general-purpose	hardware,	using	general-purpose	computer	data	storage.	However,	this	idea	is	still	pursued	for	certain	applications	by	some	companies	like	Netezza	and	Oracle	(Exadata).	Late	1970s,	SQL	DBMS	IBM	started	working	on	a	prototype	system	loosely	based	on	Codd's	concepts
as	System	R	in	the	early	1970s.	The	first	version	was	ready	in	1974/5,	and	work	then	started	on	multi-table	systems	in	which	the	data	could	be	split	so	that	all	of	the	data	for	a	record	(some	of	which	is	optional)	did	not	have	to	be	stored	in	a	single	large	"chunk".	Subsequent	multi-user	versions	were	tested	by	customers	in	1978	and	1979,	by	which	time
a	standardized	query	language	–	SQL[citation	needed]	–	had	been	added.	Codd's	ideas	were	establishing	themselves	as	both	workable	and	superior	to	CODASYL,	pushing	IBM	to	develop	a	true	production	version	of	System	R,	known	as	SQL/DS,	and,	later,	Database	2	(DB2).	Larry	Ellison's	Oracle	Database	(or	more	simply,	Oracle)	started	from	a
different	chain,	based	on	IBM's	papers	on	System	R.	Though	Oracle	V1	implementations	were	completed	in	1978,	it	wasn't	until	Oracle	Version	2	when	Ellison	beat	IBM	to	market	in	1979.[18]	Stonebraker	went	on	to	apply	the	lessons	from	INGRES	to	develop	a	new	database,	Postgres,	which	is	now	known	as	PostgreSQL.	PostgreSQL	is	often	used	for
global	mission-critical	applications	(the	.org	and	.info	domain	name	registries	use	it	as	their	primary	data	store,	as	do	many	large	companies	and	financial	institutions).	In	Sweden,	Codd's	paper	was	also	read	and	Mimer	SQL	was	developed	from	the	mid-1970s	at	Uppsala	University.	In	1984,	this	project	was	consolidated	into	an	independent
enterprise.	Another	data	model,	the	entity–relationship	model,	emerged	in	1976	and	gained	popularity	for	database	design	as	it	emphasized	a	more	familiar	description	than	the	earlier	relational	model.	Later	on,	entity–relationship	constructs	were	retrofitted	as	a	data	modeling	construct	for	the	relational	model,	and	the	difference	between	the	two
have	become	irrelevant.[citation	needed]	1980s,	on	the	desktop	The	1980s	ushered	in	the	age	of	desktop	computing.	The	new	computers	empowered	their	users	with	spreadsheets	like	Lotus	1-2-3	and	database	software	like	dBASE.	The	dBASE	product	was	lightweight	and	easy	for	any	computer	user	to	understand	out	of	the	box.	C.	Wayne	Ratliff,	the
creator	of	dBASE,	stated:	"dBASE	was	different	from	programs	like	BASIC,	C,	FORTRAN,	and	COBOL	in	that	a	lot	of	the	dirty	work	had	already	been	done.	The	data	manipulation	is	done	by	dBASE	instead	of	by	the	user,	so	the	user	can	concentrate	on	what	he	is	doing,	rather	than	having	to	mess	with	the	dirty	details	of	opening,	reading,	and	closing
files,	and	managing	space	allocation."[19]	dBASE	was	one	of	the	top	selling	software	titles	in	the	1980s	and	early	1990s.	1990s,	object-oriented	The	1990s,	along	with	a	rise	in	object-oriented	programming,	saw	a	growth	in	how	data	in	various	databases	were	handled.	Programmers	and	designers	began	to	treat	the	data	in	their	databases	as	objects.
That	is	to	say	that	if	a	person's	data	were	in	a	database,	that	person's	attributes,	such	as	their	address,	phone	number,	and	age,	were	now	considered	to	belong	to	that	person	instead	of	being	extraneous	data.	This	allows	for	relations	between	data	to	be	relations	to	objects	and	their	attributes	and	not	to	individual	fields.[20]	The	term	"object–relational
impedance	mismatch"	described	the	inconvenience	of	translating	between	programmed	objects	and	database	tables.	Object	databases	and	object–relational	databases	attempt	to	solve	this	problem	by	providing	an	object-oriented	language	(sometimes	as	extensions	to	SQL)	that	programmers	can	use	as	alternative	to	purely	relational	SQL.	On	the
programming	side,	libraries	known	as	object–relational	mappings	(ORMs)	attempt	to	solve	the	same	problem.	2000s,	NoSQL	and	NewSQL	Main	articles:	NoSQL	and	NewSQL	XML	databases	are	a	type	of	structured	document-oriented	database	that	allows	querying	based	on	XML	document	attributes.	XML	databases	are	mostly	used	in	applications
where	the	data	is	conveniently	viewed	as	a	collection	of	documents,	with	a	structure	that	can	vary	from	the	very	flexible	to	the	highly	rigid:	examples	include	scientific	articles,	patents,	tax	filings,	and	personnel	records.	NoSQL	databases	are	often	very	fast,	do	not	require	fixed	table	schemas,	avoid	join	operations	by	storing	denormalized	data,	and
are	designed	to	scale	horizontally.	In	recent	years,	there	has	been	a	strong	demand	for	massively	distributed	databases	with	high	partition	tolerance,	but	according	to	the	CAP	theorem	it	is	impossible	for	a	distributed	system	to	simultaneously	provide	consistency,	availability,	and	partition	tolerance	guarantees.	A	distributed	system	can	satisfy	any	two
of	these	guarantees	at	the	same	time,	but	not	all	three.	For	that	reason,	many	NoSQL	databases	are	using	what	is	called	eventual	consistency	to	provide	both	availability	and	partition	tolerance	guarantees	with	a	reduced	level	of	data	consistency.	NewSQL	is	a	class	of	modern	relational	databases	that	aims	to	provide	the	same	scalable	performance	of
NoSQL	systems	for	online	transaction	processing	(read-write)	workloads	while	still	using	SQL	and	maintaining	the	ACID	guarantees	of	a	traditional	database	system.	Use	cases	This	section	does	not	cite	any	sources.	Please	help	improve	this	section	by	adding	citations	to	reliable	sources.	Unsourced	material	may	be	challenged	and	removed.	(March
2013)	(Learn	how	and	when	to	remove	this	template	message)	Databases	are	used	to	support	internal	operations	of	organizations	and	to	underpin	online	interactions	with	customers	and	suppliers	(see	Enterprise	software).	Databases	are	used	to	hold	administrative	information	and	more	specialized	data,	such	as	engineering	data	or	economic	models.
Examples	include	computerized	library	systems,	flight	reservation	systems,	computerized	parts	inventory	systems,	and	many	content	management	systems	that	store	websites	as	collections	of	webpages	in	a	database.	Classification	One	way	to	classify	databases	involves	the	type	of	their	contents,	for	example:	bibliographic,	document-text,	statistical,
or	multimedia	objects.	Another	way	is	by	their	application	area,	for	example:	accounting,	music	compositions,	movies,	banking,	manufacturing,	or	insurance.	A	third	way	is	by	some	technical	aspect,	such	as	the	database	structure	or	interface	type.	This	section	lists	a	few	of	the	adjectives	used	to	characterize	different	kinds	of	databases.	An	in-memory
database	is	a	database	that	primarily	resides	in	main	memory,	but	is	typically	backed-up	by	non-volatile	computer	data	storage.	Main	memory	databases	are	faster	than	disk	databases,	and	so	are	often	used	where	response	time	is	critical,	such	as	in	telecommunications	network	equipment.	An	active	database	includes	an	event-driven	architecture
which	can	respond	to	conditions	both	inside	and	outside	the	database.	Possible	uses	include	security	monitoring,	alerting,	statistics	gathering	and	authorization.	Many	databases	provide	active	database	features	in	the	form	of	database	triggers.	A	cloud	database	relies	on	cloud	technology.	Both	the	database	and	most	of	its	DBMS	reside	remotely,	"in
the	cloud",	while	its	applications	are	both	developed	by	programmers	and	later	maintained	and	used	by	end-users	through	a	web	browser	and	Open	APIs.	Data	warehouses	archive	data	from	operational	databases	and	often	from	external	sources	such	as	market	research	firms.	The	warehouse	becomes	the	central	source	of	data	for	use	by	managers
and	other	end-users	who	may	not	have	access	to	operational	data.	For	example,	sales	data	might	be	aggregated	to	weekly	totals	and	converted	from	internal	product	codes	to	use	UPCs	so	that	they	can	be	compared	with	ACNielsen	data.	Some	basic	and	essential	components	of	data	warehousing	include	extracting,	analyzing,	and	mining	data,
transforming,	loading,	and	managing	data	so	as	to	make	them	available	for	further	use.	A	deductive	database	combines	logic	programming	with	a	relational	database.	A	distributed	database	is	one	in	which	both	the	data	and	the	DBMS	span	multiple	computers.	A	document-oriented	database	is	designed	for	storing,	retrieving,	and	managing	document-
oriented,	or	semi	structured,	information.	Document-oriented	databases	are	one	of	the	main	categories	of	NoSQL	databases.	An	embedded	database	system	is	a	DBMS	which	is	tightly	integrated	with	an	application	software	that	requires	access	to	stored	data	in	such	a	way	that	the	DBMS	is	hidden	from	the	application's	end-users	and	requires	little	or
no	ongoing	maintenance.[21]	End-user	databases	consist	of	data	developed	by	individual	end-users.	Examples	of	these	are	collections	of	documents,	spreadsheets,	presentations,	multimedia,	and	other	files.	Several	products	exist	to	support	such	databases.	Some	of	them	are	much	simpler	than	full-fledged	DBMSs,	with	more	elementary	DBMS
functionality.	A	federated	database	system	comprises	several	distinct	databases,	each	with	its	own	DBMS.	It	is	handled	as	a	single	database	by	a	federated	database	management	system	(FDBMS),	which	transparently	integrates	multiple	autonomous	DBMSs,	possibly	of	different	types	(in	which	case	it	would	also	be	a	heterogeneous	database	system),
and	provides	them	with	an	integrated	conceptual	view.	Sometimes	the	term	multi-database	is	used	as	a	synonym	to	federated	database,	though	it	may	refer	to	a	less	integrated	(e.g.,	without	an	FDBMS	and	a	managed	integrated	schema)	group	of	databases	that	cooperate	in	a	single	application.	In	this	case,	typically	middleware	is	used	for
distribution,	which	typically	includes	an	atomic	commit	protocol	(ACP),	e.g.,	the	two-phase	commit	protocol,	to	allow	distributed	(global)	transactions	across	the	participating	databases.	A	graph	database	is	a	kind	of	NoSQL	database	that	uses	graph	structures	with	nodes,	edges,	and	properties	to	represent	and	store	information.	General	graph
databases	that	can	store	any	graph	are	distinct	from	specialized	graph	databases	such	as	triplestores	and	network	databases.	An	array	DBMS	is	a	kind	of	NoSQL	DBMS	that	allows	modeling,	storage,	and	retrieval	of	(usually	large)	multi-dimensional	arrays	such	as	satellite	images	and	climate	simulation	output.	In	a	hypertext	or	hypermedia	database,
any	word	or	a	piece	of	text	representing	an	object,	e.g.,	another	piece	of	text,	an	article,	a	picture,	or	a	film,	can	be	hyperlinked	to	that	object.	Hypertext	databases	are	particularly	useful	for	organizing	large	amounts	of	disparate	information.	For	example,	they	are	useful	for	organizing	online	encyclopedias,	where	users	can	conveniently	jump	around
the	text.	The	World	Wide	Web	is	thus	a	large	distributed	hypertext	database.	A	knowledge	base	(abbreviated	KB,	kb	or	Δ[22][23])	is	a	special	kind	of	database	for	knowledge	management,	providing	the	means	for	the	computerized	collection,	organization,	and	retrieval	of	knowledge.	Also	a	collection	of	data	representing	problems	with	their	solutions
and	related	experiences.	A	mobile	database	can	be	carried	on	or	synchronized	from	a	mobile	computing	device.	Operational	databases	store	detailed	data	about	the	operations	of	an	organization.	They	typically	process	relatively	high	volumes	of	updates	using	transactions.	Examples	include	customer	databases	that	record	contact,	credit,	and
demographic	information	about	a	business's	customers,	personnel	databases	that	hold	information	such	as	salary,	benefits,	skills	data	about	employees,	enterprise	resource	planning	systems	that	record	details	about	product	components,	parts	inventory,	and	financial	databases	that	keep	track	of	the	organization's	money,	accounting	and	financial
dealings.	A	parallel	database	seeks	to	improve	performance	through	parallelization	for	tasks	such	as	loading	data,	building	indexes	and	evaluating	queries.	The	major	parallel	DBMS	architectures	which	are	induced	by	the	underlying	hardware	architecture	are:	Shared	memory	architecture,	where	multiple	processors	share	the	main	memory	space,	as
well	as	other	data	storage.	Shared	disk	architecture,	where	each	processing	unit	(typically	consisting	of	multiple	processors)	has	its	own	main	memory,	but	all	units	share	the	other	storage.	Shared-nothing	architecture,	where	each	processing	unit	has	its	own	main	memory	and	other	storage.	Probabilistic	databases	employ	fuzzy	logic	to	draw
inferences	from	imprecise	data.	Real-time	databases	process	transactions	fast	enough	for	the	result	to	come	back	and	be	acted	on	right	away.	A	spatial	database	can	store	the	data	with	multidimensional	features.	The	queries	on	such	data	include	location-based	queries,	like	"Where	is	the	closest	hotel	in	my	area?".	A	temporal	database	has	built-in
time	aspects,	for	example	a	temporal	data	model	and	a	temporal	version	of	SQL.	More	specifically	the	temporal	aspects	usually	include	valid-time	and	transaction-time.	A	terminology-oriented	database	builds	upon	an	object-oriented	database,	often	customized	for	a	specific	field.	An	unstructured	data	database	is	intended	to	store	in	a	manageable	and
protected	way	diverse	objects	that	do	not	fit	naturally	and	conveniently	in	common	databases.	It	may	include	email	messages,	documents,	journals,	multimedia	objects,	etc.	The	name	may	be	misleading	since	some	objects	can	be	highly	structured.	However,	the	entire	possible	object	collection	does	not	fit	into	a	predefined	structured	framework.	Most
established	DBMSs	now	support	unstructured	data	in	various	ways,	and	new	dedicated	DBMSs	are	emerging.	Database	management	system	Connolly	and	Begg	define	database	management	system	(DBMS)	as	a	"software	system	that	enables	users	to	define,	create,	maintain	and	control	access	to	the	database".[24]	Examples	of	DBMS's	include
MySQL,	PostgreSQL,	Microsoft	SQL	Server,	Oracle	Database,	and	Microsoft	Access.	The	DBMS	acronym	is	sometimes	extended	to	indicate	the	underlying	database	model,	with	RDBMS	for	the	relational,	OODBMS	for	the	object	(oriented)	and	ORDBMS	for	the	object–relational	model.	Other	extensions	can	indicate	some	other	characteristic,	such	as
DDBMS	for	a	distributed	database	management	systems.	The	functionality	provided	by	a	DBMS	can	vary	enormously.	The	core	functionality	is	the	storage,	retrieval	and	update	of	data.	Codd	proposed	the	following	functions	and	services	a	fully-fledged	general	purpose	DBMS	should	provide:[25]	Data	storage,	retrieval	and	update	User	accessible
catalog	or	data	dictionary	describing	the	metadata	Support	for	transactions	and	concurrency	Facilities	for	recovering	the	database	should	it	become	damaged	Support	for	authorization	of	access	and	update	of	data	Access	support	from	remote	locations	Enforcing	constraints	to	ensure	data	in	the	database	abides	by	certain	rules	It	is	also	generally	to
be	expected	the	DBMS	will	provide	a	set	of	utilities	for	such	purposes	as	may	be	necessary	to	administer	the	database	effectively,	including	import,	export,	monitoring,	defragmentation	and	analysis	utilities.[26]	The	core	part	of	the	DBMS	interacting	between	the	database	and	the	application	interface	sometimes	referred	to	as	the	database	engine.
Often	DBMSs	will	have	configuration	parameters	that	can	be	statically	and	dynamically	tuned,	for	example	the	maximum	amount	of	main	memory	on	a	server	the	database	can	use.	The	trend	is	to	minimize	the	amount	of	manual	configuration,	and	for	cases	such	as	embedded	databases	the	need	to	target	zero-administration	is	paramount.	The	large
major	enterprise	DBMSs	have	tended	to	increase	in	size	and	functionality	and	can	have	involved	thousands	of	human	years	of	development	effort	through	their	lifetime.[a]	Early	multi-user	DBMS	typically	only	allowed	for	the	application	to	reside	on	the	same	computer	with	access	via	terminals	or	terminal	emulation	software.	The	client–server
architecture	was	a	development	where	the	application	resided	on	a	client	desktop	and	the	database	on	a	server	allowing	the	processing	to	be	distributed.	This	evolved	into	a	multitier	architecture	incorporating	application	servers	and	web	servers	with	the	end	user	interface	via	a	web	browser	with	the	database	only	directly	connected	to	the	adjacent
tier.[27]	A	general-purpose	DBMS	will	provide	public	application	programming	interfaces	(API)	and	optionally	a	processor	for	database	languages	such	as	SQL	to	allow	applications	to	be	written	to	interact	with	the	database.	A	special	purpose	DBMS	may	use	a	private	API	and	be	specifically	customized	and	linked	to	a	single	application.	For	example,
an	email	system	performing	many	of	the	functions	of	a	general-purpose	DBMS	such	as	message	insertion,	message	deletion,	attachment	handling,	blocklist	lookup,	associating	messages	an	email	address	and	so	forth	however	these	functions	are	limited	to	what	is	required	to	handle	email.	Application	Main	article:	Database	application	External
interaction	with	the	database	will	be	via	an	application	program	that	interfaces	with	the	DBMS.[28]	This	can	range	from	a	database	tool	that	allows	users	to	execute	SQL	queries	textually	or	graphically,	to	a	web	site	that	happens	to	use	a	database	to	store	and	search	information.	Application	program	interface	A	programmer	will	code	interactions	to
the	database	(sometimes	referred	to	as	a	datasource)	via	an	application	program	interface	(API)	or	via	a	database	language.	The	particular	API	or	language	chosen	will	need	to	be	supported	by	DBMS,	possible	indirectly	via	a	preprocessor	or	a	bridging	API.	Some	API's	aim	to	be	database	independent,	ODBC	being	a	commonly	known	example.	Other
common	API's	include	JDBC	and	ADO.NET.	Database	languages	Database	languages	are	special-purpose	languages,	which	allow	one	or	more	of	the	following	tasks,	sometimes	distinguished	as	sublanguages:	Data	control	language	(DCL)	–	controls	access	to	data;	Data	definition	language	(DDL)	–	defines	data	types	such	as	creating,	altering,	or
dropping	tables	and	the	relationships	among	them;	Data	manipulation	language	(DML)	–	performs	tasks	such	as	inserting,	updating,	or	deleting	data	occurrences;	Data	query	language	(DQL)	–	allows	searching	for	information	and	computing	derived	information.	Database	languages	are	specific	to	a	particular	data	model.	Notable	examples	include:
SQL	combines	the	roles	of	data	definition,	data	manipulation,	and	query	in	a	single	language.	It	was	one	of	the	first	commercial	languages	for	the	relational	model,	although	it	departs	in	some	respects	from	the	relational	model	as	described	by	Codd	(for	example,	the	rows	and	columns	of	a	table	can	be	ordered).	SQL	became	a	standard	of	the
American	National	Standards	Institute	(ANSI)	in	1986,	and	of	the	International	Organization	for	Standardization	(ISO)	in	1987.	The	standards	have	been	regularly	enhanced	since	and	is	supported	(with	varying	degrees	of	conformance)	by	all	mainstream	commercial	relational	DBMSs.[29][30]	OQL	is	an	object	model	language	standard	(from	the
Object	Data	Management	Group).	It	has	influenced	the	design	of	some	of	the	newer	query	languages	like	JDOQL	and	EJB	QL.	XQuery	is	a	standard	XML	query	language	implemented	by	XML	database	systems	such	as	MarkLogic	and	eXist,	by	relational	databases	with	XML	capability	such	as	Oracle	and	DB2,	and	also	by	in-memory	XML	processors
such	as	Saxon.	SQL/XML	combines	XQuery	with	SQL.[31]	A	database	language	may	also	incorporate	features	like:	DBMS-specific	configuration	and	storage	engine	management	Computations	to	modify	query	results,	like	counting,	summing,	averaging,	sorting,	grouping,	and	cross-referencing	Constraint	enforcement	(e.g.	in	an	automotive	database,
only	allowing	one	engine	type	per	car)	Application	programming	interface	version	of	the	query	language,	for	programmer	convenience	Storage	Main	articles:	Computer	data	storage	and	Database	engine	Database	storage	is	the	container	of	the	physical	materialization	of	a	database.	It	comprises	the	internal	(physical)	level	in	the	database
architecture.	It	also	contains	all	the	information	needed	(e.g.,	metadata,	"data	about	the	data",	and	internal	data	structures)	to	reconstruct	the	conceptual	level	and	external	level	from	the	internal	level	when	needed.	Putting	data	into	permanent	storage	is	generally	the	responsibility	of	the	database	engine	a.k.a.	"storage	engine".	Though	typically
accessed	by	a	DBMS	through	the	underlying	operating	system	(and	often	using	the	operating	systems'	file	systems	as	intermediates	for	storage	layout),	storage	properties	and	configuration	setting	are	extremely	important	for	the	efficient	operation	of	the	DBMS,	and	thus	are	closely	maintained	by	database	administrators.	A	DBMS,	while	in	operation,
always	has	its	database	residing	in	several	types	of	storage	(e.g.,	memory	and	external	storage).	The	database	data	and	the	additional	needed	information,	possibly	in	very	large	amounts,	are	coded	into	bits.	Data	typically	reside	in	the	storage	in	structures	that	look	completely	different	from	the	way	the	data	look	in	the	conceptual	and	external	levels,
but	in	ways	that	attempt	to	optimize	(the	best	possible)	these	levels'	reconstruction	when	needed	by	users	and	programs,	as	well	as	for	computing	additional	types	of	needed	information	from	the	data	(e.g.,	when	querying	the	database).	Some	DBMSs	support	specifying	which	character	encoding	was	used	to	store	data,	so	multiple	encodings	can	be
used	in	the	same	database.	Various	low-level	database	storage	structures	are	used	by	the	storage	engine	to	serialize	the	data	model	so	it	can	be	written	to	the	medium	of	choice.	Techniques	such	as	indexing	may	be	used	to	improve	performance.	Conventional	storage	is	row-oriented,	but	there	are	also	column-oriented	and	correlation	databases.
Materialized	views	Main	article:	Materialized	view	Often	storage	redundancy	is	employed	to	increase	performance.	A	common	example	is	storing	materialized	views,	which	consist	of	frequently	needed	external	views	or	query	results.	Storing	such	views	saves	the	expensive	computing	of	them	each	time	they	are	needed.	The	downsides	of	materialized
views	are	the	overhead	incurred	when	updating	them	to	keep	them	synchronized	with	their	original	updated	database	data,	and	the	cost	of	storage	redundancy.	Replication	Main	article:	Database	replication	Occasionally	a	database	employs	storage	redundancy	by	database	objects	replication	(with	one	or	more	copies)	to	increase	data	availability
(both	to	improve	performance	of	simultaneous	multiple	end-user	accesses	to	a	same	database	object,	and	to	provide	resiliency	in	a	case	of	partial	failure	of	a	distributed	database).	Updates	of	a	replicated	object	need	to	be	synchronized	across	the	object	copies.	In	many	cases,	the	entire	database	is	replicated.	Security	This	article	appears	to	contradict
the	article	Database	security.	Please	see	discussion	on	the	linked	talk	page.	(March	2013)	(Learn	how	and	when	to	remove	this	template	message)	Main	article:	Database	security	Database	security	deals	with	all	various	aspects	of	protecting	the	database	content,	its	owners,	and	its	users.	It	ranges	from	protection	from	intentional	unauthorized
database	uses	to	unintentional	database	accesses	by	unauthorized	entities	(e.g.,	a	person	or	a	computer	program).	Database	access	control	deals	with	controlling	who	(a	person	or	a	certain	computer	program)	is	allowed	to	access	what	information	in	the	database.	The	information	may	comprise	specific	database	objects	(e.g.,	record	types,	specific
records,	data	structures),	certain	computations	over	certain	objects	(e.g.,	query	types,	or	specific	queries),	or	using	specific	access	paths	to	the	former	(e.g.,	using	specific	indexes	or	other	data	structures	to	access	information).	Database	access	controls	are	set	by	special	authorized	(by	the	database	owner)	personnel	that	uses	dedicated	protected
security	DBMS	interfaces.	This	may	be	managed	directly	on	an	individual	basis,	or	by	the	assignment	of	individuals	and	privileges	to	groups,	or	(in	the	most	elaborate	models)	through	the	assignment	of	individuals	and	groups	to	roles	which	are	then	granted	entitlements.	Data	security	prevents	unauthorized	users	from	viewing	or	updating	the
database.	Using	passwords,	users	are	allowed	access	to	the	entire	database	or	subsets	of	it	called	"subschemas".	For	example,	an	employee	database	can	contain	all	the	data	about	an	individual	employee,	but	one	group	of	users	may	be	authorized	to	view	only	payroll	data,	while	others	are	allowed	access	to	only	work	history	and	medical	data.	If	the
DBMS	provides	a	way	to	interactively	enter	and	update	the	database,	as	well	as	interrogate	it,	this	capability	allows	for	managing	personal	databases.	Data	security	in	general	deals	with	protecting	specific	chunks	of	data,	both	physically	(i.e.,	from	corruption,	or	destruction,	or	removal;	e.g.,	see	physical	security),	or	the	interpretation	of	them,	or	parts
of	them	to	meaningful	information	(e.g.,	by	looking	at	the	strings	of	bits	that	they	comprise,	concluding	specific	valid	credit-card	numbers;	e.g.,	see	data	encryption).	Change	and	access	logging	records	who	accessed	which	attributes,	what	was	changed,	and	when	it	was	changed.	Logging	services	allow	for	a	forensic	database	audit	later	by	keeping	a
record	of	access	occurrences	and	changes.	Sometimes	application-level	code	is	used	to	record	changes	rather	than	leaving	this	to	the	database.	Monitoring	can	be	set	up	to	attempt	to	detect	security	breaches.	Transactions	and	concurrency	Further	information:	Concurrency	control	Database	transactions	can	be	used	to	introduce	some	level	of	fault
tolerance	and	data	integrity	after	recovery	from	a	crash.	A	database	transaction	is	a	unit	of	work,	typically	encapsulating	a	number	of	operations	over	a	database	(e.g.,	reading	a	database	object,	writing,	acquiring	lock,	etc.),	an	abstraction	supported	in	database	and	also	other	systems.	Each	transaction	has	well	defined	boundaries	in	terms	of	which
program/code	executions	are	included	in	that	transaction	(determined	by	the	transaction's	programmer	via	special	transaction	commands).	The	acronym	ACID	describes	some	ideal	properties	of	a	database	transaction:	atomicity,	consistency,	isolation,	and	durability.	Migration	See	also:	Data	migration	§	Database	migration	A	database	built	with	one
DBMS	is	not	portable	to	another	DBMS	(i.e.,	the	other	DBMS	cannot	run	it).	However,	in	some	situations,	it	is	desirable	to	migrate	a	database	from	one	DBMS	to	another.	The	reasons	are	primarily	economical	(different	DBMSs	may	have	different	total	costs	of	ownership	or	TCOs),	functional,	and	operational	(different	DBMSs	may	have	different
capabilities).	The	migration	involves	the	database's	transformation	from	one	DBMS	type	to	another.	The	transformation	should	maintain	(if	possible)	the	database	related	application	(i.e.,	all	related	application	programs)	intact.	Thus,	the	database's	conceptual	and	external	architectural	levels	should	be	maintained	in	the	transformation.	It	may	be
desired	that	also	some	aspects	of	the	architecture	internal	level	are	maintained.	A	complex	or	large	database	migration	may	be	a	complicated	and	costly	(one-time)	project	by	itself,	which	should	be	factored	into	the	decision	to	migrate.	This	in	spite	of	the	fact	that	tools	may	exist	to	help	migration	between	specific	DBMSs.	Typically,	a	DBMS	vendor
provides	tools	to	help	importing	databases	from	other	popular	DBMSs.	Building,	maintaining,	and	tuning	Main	article:	Database	tuning	After	designing	a	database	for	an	application,	the	next	stage	is	building	the	database.	Typically,	an	appropriate	general-purpose	DBMS	can	be	selected	to	be	used	for	this	purpose.	A	DBMS	provides	the	needed	user
interfaces	to	be	used	by	database	administrators	to	define	the	needed	application's	data	structures	within	the	DBMS's	respective	data	model.	Other	user	interfaces	are	used	to	select	needed	DBMS	parameters	(like	security	related,	storage	allocation	parameters,	etc.).	When	the	database	is	ready	(all	its	data	structures	and	other	needed	components
are	defined),	it	is	typically	populated	with	initial	application's	data	(database	initialization,	which	is	typically	a	distinct	project;	in	many	cases	using	specialized	DBMS	interfaces	that	support	bulk	insertion)	before	making	it	operational.	In	some	cases,	the	database	becomes	operational	while	empty	of	application	data,	and	data	are	accumulated	during
its	operation.	After	the	database	is	created,	initialized	and	populated	it	needs	to	be	maintained.	Various	database	parameters	may	need	changing	and	the	database	may	need	to	be	tuned	(tuning)	for	better	performance;	application's	data	structures	may	be	changed	or	added,	new	related	application	programs	may	be	written	to	add	to	the	application's
functionality,	etc.	Backup	and	restore	Main	article:	Backup	Sometimes	it	is	desired	to	bring	a	database	back	to	a	previous	state	(for	many	reasons,	e.g.,	cases	when	the	database	is	found	corrupted	due	to	a	software	error,	or	if	it	has	been	updated	with	erroneous	data).	To	achieve	this,	a	backup	operation	is	done	occasionally	or	continuously,	where
each	desired	database	state	(i.e.,	the	values	of	its	data	and	their	embedding	in	database's	data	structures)	is	kept	within	dedicated	backup	files	(many	techniques	exist	to	do	this	effectively).	When	it	is	decided	by	a	database	administrator	to	bring	the	database	back	to	this	state	(e.g.,	by	specifying	this	state	by	a	desired	point	in	time	when	the	database
was	in	this	state),	these	files	are	used	to	restore	that	state.	Static	analysis	Static	analysis	techniques	for	software	verification	can	be	applied	also	in	the	scenario	of	query	languages.	In	particular,	the	*Abstract	interpretation	framework	has	been	extended	to	the	field	of	query	languages	for	relational	databases	as	a	way	to	support	sound	approximation
techniques.[32]	The	semantics	of	query	languages	can	be	tuned	according	to	suitable	abstractions	of	the	concrete	domain	of	data.	The	abstraction	of	relational	database	system	has	many	interesting	applications,	in	particular,	for	security	purposes,	such	as	fine	grained	access	control,	watermarking,	etc.	Miscellaneous	features	Other	DBMS	features
might	include:	Database	logs	–	This	helps	in	keeping	a	history	of	the	executed	functions.	Graphics	component	for	producing	graphs	and	charts,	especially	in	a	data	warehouse	system.	Query	optimizer	–	Performs	query	optimization	on	every	query	to	choose	an	efficient	query	plan	(a	partial	order	(tree)	of	operations)	to	be	executed	to	compute	the
query	result.	May	be	specific	to	a	particular	storage	engine.	Tools	or	hooks	for	database	design,	application	programming,	application	program	maintenance,	database	performance	analysis	and	monitoring,	database	configuration	monitoring,	DBMS	hardware	configuration	(a	DBMS	and	related	database	may	span	computers,	networks,	and	storage
units)	and	related	database	mapping	(especially	for	a	distributed	DBMS),	storage	allocation	and	database	layout	monitoring,	storage	migration,	etc.	Increasingly,	there	are	calls	for	a	single	system	that	incorporates	all	of	these	core	functionalities	into	the	same	build,	test,	and	deployment	framework	for	database	management	and	source	control.
Borrowing	from	other	developments	in	the	software	industry,	some	market	such	offerings	as	"DevOps	for	database".[33]	Design	and	modeling	Main	article:	Database	design	The	first	task	of	a	database	designer	is	to	produce	a	conceptual	data	model	that	reflects	the	structure	of	the	information	to	be	held	in	the	database.	A	common	approach	to	this	is
to	develop	an	entity–relationship	model,	often	with	the	aid	of	drawing	tools.	Another	popular	approach	is	the	Unified	Modeling	Language.	A	successful	data	model	will	accurately	reflect	the	possible	state	of	the	external	world	being	modeled:	for	example,	if	people	can	have	more	than	one	phone	number,	it	will	allow	this	information	to	be	captured.
Designing	a	good	conceptual	data	model	requires	a	good	understanding	of	the	application	domain;	it	typically	involves	asking	deep	questions	about	the	things	of	interest	to	an	organization,	like	"can	a	customer	also	be	a	supplier?",	or	"if	a	product	is	sold	with	two	different	forms	of	packaging,	are	those	the	same	product	or	different	products?",	or	"if	a
plane	flies	from	New	York	to	Dubai	via	Frankfurt,	is	that	one	flight	or	two	(or	maybe	even	three)?".	The	answers	to	these	questions	establish	definitions	of	the	terminology	used	for	entities	(customers,	products,	flights,	flight	segments)	and	their	relationships	and	attributes.	Producing	the	conceptual	data	model	sometimes	involves	input	from	business
processes,	or	the	analysis	of	workflow	in	the	organization.	This	can	help	to	establish	what	information	is	needed	in	the	database,	and	what	can	be	left	out.	For	example,	it	can	help	when	deciding	whether	the	database	needs	to	hold	historic	data	as	well	as	current	data.	Having	produced	a	conceptual	data	model	that	users	are	happy	with,	the	next	stage
is	to	translate	this	into	a	schema	that	implements	the	relevant	data	structures	within	the	database.	This	process	is	often	called	logical	database	design,	and	the	output	is	a	logical	data	model	expressed	in	the	form	of	a	schema.	Whereas	the	conceptual	data	model	is	(in	theory	at	least)	independent	of	the	choice	of	database	technology,	the	logical	data
model	will	be	expressed	in	terms	of	a	particular	database	model	supported	by	the	chosen	DBMS.	(The	terms	data	model	and	database	model	are	often	used	interchangeably,	but	in	this	article	we	use	data	model	for	the	design	of	a	specific	database,	and	database	model	for	the	modeling	notation	used	to	express	that	design).	The	most	popular	database
model	for	general-purpose	databases	is	the	relational	model,	or	more	precisely,	the	relational	model	as	represented	by	the	SQL	language.	The	process	of	creating	a	logical	database	design	using	this	model	uses	a	methodical	approach	known	as	normalization.	The	goal	of	normalization	is	to	ensure	that	each	elementary	"fact"	is	only	recorded	in	one
place,	so	that	insertions,	updates,	and	deletions	automatically	maintain	consistency.	The	final	stage	of	database	design	is	to	make	the	decisions	that	affect	performance,	scalability,	recovery,	security,	and	the	like,	which	depend	on	the	particular	DBMS.	This	is	often	called	physical	database	design,	and	the	output	is	the	physical	data	model.	A	key	goal
during	this	stage	is	data	independence,	meaning	that	the	decisions	made	for	performance	optimization	purposes	should	be	invisible	to	end-users	and	applications.	There	are	two	types	of	data	independence:	Physical	data	independence	and	logical	data	independence.	Physical	design	is	driven	mainly	by	performance	requirements,	and	requires	a	good
knowledge	of	the	expected	workload	and	access	patterns,	and	a	deep	understanding	of	the	features	offered	by	the	chosen	DBMS.	Another	aspect	of	physical	database	design	is	security.	It	involves	both	defining	access	control	to	database	objects	as	well	as	defining	security	levels	and	methods	for	the	data	itself.	Models	Main	article:	Database	model
Collage	of	five	types	of	database	models	A	database	model	is	a	type	of	data	model	that	determines	the	logical	structure	of	a	database	and	fundamentally	determines	in	which	manner	data	can	be	stored,	organized,	and	manipulated.	The	most	popular	example	of	a	database	model	is	the	relational	model	(or	the	SQL	approximation	of	relational),	which
uses	a	table-based	format.	Common	logical	data	models	for	databases	include:	Navigational	databases	Hierarchical	database	model	Network	model	Graph	database	Relational	model	Entity–relationship	model	Enhanced	entity–relationship	model	Object	model	Document	model	Entity–attribute–value	model	Star	schema	An	object–relational	database
combines	the	two	related	structures.	Physical	data	models	include:	Inverted	index	Flat	file	Other	models	include:	Associative	model	Multidimensional	model	Array	model	Multivalue	model	Specialized	models	are	optimized	for	particular	types	of	data:	XML	database	Semantic	model	Content	store	Event	store	Time	series	model	External,	conceptual,	and
internal	views	Traditional	view	of	data[34]	A	database	management	system	provides	three	views	of	the	database	data:	The	external	level	defines	how	each	group	of	end-users	sees	the	organization	of	data	in	the	database.	A	single	database	can	have	any	number	of	views	at	the	external	level.	The	conceptual	level	unifies	the	various	external	views	into	a
compatible	global	view.[35]	It	provides	the	synthesis	of	all	the	external	views.	It	is	out	of	the	scope	of	the	various	database	end-users,	and	is	rather	of	interest	to	database	application	developers	and	database	administrators.	The	internal	level	(or	physical	level)	is	the	internal	organization	of	data	inside	a	DBMS.	It	is	concerned	with	cost,	performance,
scalability	and	other	operational	matters.	It	deals	with	storage	layout	of	the	data,	using	storage	structures	such	as	indexes	to	enhance	performance.	Occasionally	it	stores	data	of	individual	views	(materialized	views),	computed	from	generic	data,	if	performance	justification	exists	for	such	redundancy.	It	balances	all	the	external	views'	performance
requirements,	possibly	conflicting,	in	an	attempt	to	optimize	overall	performance	across	all	activities.	While	there	is	typically	only	one	conceptual	(or	logical)	and	physical	(or	internal)	view	of	the	data,	there	can	be	any	number	of	different	external	views.	This	allows	users	to	see	database	information	in	a	more	business-related	way	rather	than	from	a
technical,	processing	viewpoint.	For	example,	a	financial	department	of	a	company	needs	the	payment	details	of	all	employees	as	part	of	the	company's	expenses,	but	does	not	need	details	about	employees	that	are	the	interest	of	the	human	resources	department.	Thus	different	departments	need	different	views	of	the	company's	database.	The	three-
level	database	architecture	relates	to	the	concept	of	data	independence	which	was	one	of	the	major	initial	driving	forces	of	the	relational	model.	The	idea	is	that	changes	made	at	a	certain	level	do	not	affect	the	view	at	a	higher	level.	For	example,	changes	in	the	internal	level	do	not	affect	application	programs	written	using	conceptual	level	interfaces,
which	reduces	the	impact	of	making	physical	changes	to	improve	performance.	The	conceptual	view	provides	a	level	of	indirection	between	internal	and	external.	On	one	hand	it	provides	a	common	view	of	the	database,	independent	of	different	external	view	structures,	and	on	the	other	hand	it	abstracts	away	details	of	how	the	data	are	stored	or
managed	(internal	level).	In	principle	every	level,	and	even	every	external	view,	can	be	presented	by	a	different	data	model.	In	practice	usually	a	given	DBMS	uses	the	same	data	model	for	both	the	external	and	the	conceptual	levels	(e.g.,	relational	model).	The	internal	level,	which	is	hidden	inside	the	DBMS	and	depends	on	its	implementation,
requires	a	different	level	of	detail	and	uses	its	own	types	of	data	structure	types.	Separating	the	external,	conceptual	and	internal	levels	was	a	major	feature	of	the	relational	database	model	implementations	that	dominate	21st	century	databases.[35]	Research	Database	technology	has	been	an	active	research	topic	since	the	1960s,	both	in	academia
and	in	the	research	and	development	groups	of	companies	(for	example	IBM	Research).	Research	activity	includes	theory	and	development	of	prototypes.	Notable	research	topics	have	included	models,	the	atomic	transaction	concept,	and	related	concurrency	control	techniques,	query	languages	and	query	optimization	methods,	RAID,	and	more.	The
database	research	area	has	several	dedicated	academic	journals	(for	example,	ACM	Transactions	on	Database	Systems-TODS,	Data	and	Knowledge	Engineering-DKE)	and	annual	conferences	(e.g.,	ACM	SIGMOD,	ACM	PODS,	VLDB,	IEEE	ICDE).	See	also	For	a	topical	guide	to	this	subject,	see	Outline	of	databases.	Comparison	of	database	tools
Comparison	of	object	database	management	systems	Comparison	of	object–relational	database	management	systems	Comparison	of	relational	database	management	systems	Data	hierarchy	Data	bank	Data	store	Database	theory	Database	testing	Database-centric	architecture	Flat-file	database	Journal	of	Database	Management	Question-focused
dataset	Notes	^	This	article	quotes	a	development	time	of	5	years	involving	750	people	for	DB2	release	9	alone.(Chong	et	al.	2007)	References	^	Ullman	&	Widom	1997,	p.	1.	^	"Update	–	Definition	of	update	by	Merriam-Webster".	merriam-webster.com.	^	"Retrieval	–	Definition	of	retrieval	by	Merriam-Webster".	merriam-webster.com.	^
"Administration	–	Definition	of	administration	by	Merriam-Webster".	merriam-webster.com.	^	Tsitchizris	&	Lochovsky	1982.	^	Beynon-Davies	2003.	^	Nelson	&	Nelson	2001.	^	Bachman	1973.	^	"TOPDB	Top	Database	index".	pypl.github.io.	^	"database,	n".	OED	Online.	Oxford	University	Press.	June	2013.	Retrieved	July	12,	2013.	(Subscription
required.)	^	IBM	Corporation	(October	2013).	"IBM	Information	Management	System	(IMS)	13	Transaction	and	Database	Servers	delivers	high	performance	and	low	total	cost	of	ownership".	Retrieved	Feb	20,	2014.	^	Codd	1970.	^	Hershey	&	Easthope	1972.	^	North	2010.	^	Childs	1968a.	^	Childs	1968b.	^	MICRO	Information	Management	System
(Version	5.0)	Reference	Manual,	M.A.	Kahn,	D.L.	Rumelhart,	and	B.L.	Bronson,	October	1977,	Institute	of	Labor	and	Industrial	Relations	(ILIR),	University	of	Michigan	and	Wayne	State	University	^	"Oracle	30th	Anniversary	Timeline"	(PDF).	Retrieved	23	August	2017.	^	Interview	with	Wayne	Ratliff.	The	FoxPro	History.	Retrieved	on	2013-07-12.	^
Development	of	an	object-oriented	DBMS;	Portland,	Oregon,	United	States;	Pages:	472–482;	1986;	ISBN	0-89791-204-7	^	Graves,	Steve.	"COTS	Databases	For	Embedded	Systems"	Archived	2007-11-14	at	the	Wayback	Machine,	Embedded	Computing	Design	magazine,	January	2007.	Retrieved	on	August	13,	2008.	^	Argumentation	in	Artificial
Intelligence	by	Iyad	Rahwan,	Guillermo	R.	Simari	^	"OWL	DL	Semantics".	Retrieved	10	December	2010.	^	Connolly	&	Begg	2014,	p.	64.	^	Connolly	&	Begg	2014,	pp.	97–102.	^	Connolly	&	Begg	2014,	p.	102.	^	Connolly	&	Begg	2014,	pp.	106–113.	^	Connolly	&	Begg	2014,	p.	65.	^	Chapple	2005.	^	"Structured	Query	Language	(SQL)".	International
Business	Machines.	October	27,	2006.	Retrieved	2007-06-10.	^	Wagner	2010.	^	Halder	&	Cortesi	2011.	^	Ben	Linders	(January	28,	2016).	"How	Database	Administration	Fits	into	DevOps".	Retrieved	April	15,	2017.	^	itl.nist.gov	(1993)	Integration	Definition	for	Information	Modeling	(IDEFIX)	Archived	2013-12-03	at	the	Wayback	Machine.	21
December	1993.	^	a	b	Date	2003,	pp.	31–32.	Sources	Bachman,	Charles	W.	(1973).	"The	Programmer	as	Navigator".	Communications	of	the	ACM.	16	(11):	653–658.	doi:10.1145/355611.362534.	Beynon-Davies,	Paul	(2003).	Database	Systems	(3rd	ed.).	Palgrave	Macmillan.	ISBN	978-1403916013.	Chapple,	Mike	(2005).	"SQL	Fundamentals".
Databases.	About.com.	Archived	from	the	original	on	22	February	2009.	Retrieved	28	January	2009.	Childs,	David	L.	(1968a).	"Description	of	a	set-theoretic	data	structure"	(PDF).	CONCOMP	(Research	in	Conversational	Use	of	Computers)	Project.	Technical	Report	3.	University	of	Michigan.	Childs,	David	L.	(1968b).	"Feasibility	of	a	set-theoretic	data
structure:	a	general	structure	based	on	a	reconstituted	definition"	(PDF).	CONCOMP	(Research	in	Conversational	Use	of	Computers)	Project.	Technical	Report	6.	University	of	Michigan.	Chong,	Raul	F.;	Wang,	Xiaomei;	Dang,	Michael;	Snow,	Dwaine	R.	(2007).	"Introduction	to	DB2".	Understanding	DB2:	Learning	Visually	with	Examples	(2nd	ed.).
ISBN	978-0131580183.	Retrieved	17	March	2013.	Codd,	Edgar	F.	(1970).	"A	Relational	Model	of	Data	for	Large	Shared	Data	Banks"	(PDF).	Communications	of	the	ACM.	13	(6):	377–387.	doi:10.1145/362384.362685.	S2CID	207549016.	Connolly,	Thomas	M.;	Begg,	Carolyn	E.	(2014).	Database	Systems	–	A	Practical	Approach	to	Design	Implementation
and	Management	(6th	ed.).	Pearson.	ISBN	978-1292061184.	Date,	C.	J.	(2003).	An	Introduction	to	Database	Systems	(8th	ed.).	Pearson.	ISBN	978-0321197849.	Halder,	Raju;	Cortesi,	Agostino	(2011).	"Abstract	Interpretation	of	Database	Query	Languages"	(PDF).	Computer	Languages,	Systems	&	Structures.	38	(2):	123–157.
doi:10.1016/j.cl.2011.10.004.	ISSN	1477-8424.	Hershey,	William;	Easthope,	Carol	(1972).	A	set	theoretic	data	structure	and	retrieval	language.	Spring	Joint	Computer	Conference,	May	1972.	ACM	SIGIR	Forum.	7	(4).	pp.	45–55.	doi:10.1145/1095495.1095500.	Nelson,	Anne	Fulcher;	Nelson,	William	Harris	Morehead	(2001).	Building	Electronic
Commerce:	With	Web	Database	Constructions.	Prentice	Hall.	ISBN	978-0201741308.	North,	Ken	(10	March	2010).	"Sets,	Data	Models	and	Data	Independence".	Dr.	Dobb's.	Archived	from	the	original	on	24	October	2010.	Tsitchizris,	Dionysios	C.;	Lochovsky,	Fred	H.	(1982).	Data	Models.	Prentice–Hall.	ISBN	978-0131964280.	Ullman,	Jeffrey;	Widom,
Jennifer	(1997).	A	First	Course	in	Database	Systems.	Prentice–Hall.	ISBN	978-0138613372.	Wagner,	Michael	(2010),	SQL/XML:2006	–	Evaluierung	der	Standardkonformität	ausgewählter	Datenbanksysteme,	Diplomica	Verlag,	ISBN	978-3836696098	Further	reading	Ling	Liu	and	Tamer	M.	Özsu	(Eds.)	(2009).	"Encyclopedia	of	Database	Systems,	4100
p.	60	illus.	ISBN	978-0-387-49616-0.	Gray,	J.	and	Reuter,	A.	Transaction	Processing:	Concepts	and	Techniques,	1st	edition,	Morgan	Kaufmann	Publishers,	1992.	Kroenke,	David	M.	and	David	J.	Auer.	Database	Concepts.	3rd	ed.	New	York:	Prentice,	2007.	Raghu	Ramakrishnan	and	Johannes	Gehrke,	Database	Management	Systems	Abraham
Silberschatz,	Henry	F.	Korth,	S.	Sudarshan,	Database	System	Concepts	Lightstone,	S.;	Teorey,	T.;	Nadeau,	T.	(2007).	Physical	Database	Design:	the	database	professional's	guide	to	exploiting	indexes,	views,	storage,	and	more.	Morgan	Kaufmann	Press.	ISBN	978-0-12-369389-1.	Teorey,	T.;	Lightstone,	S.	and	Nadeau,	T.	Database	Modeling	&	Design:
Logical	Design,	4th	edition,	Morgan	Kaufmann	Press,	2005.	ISBN	0-12-685352-5	External	links	Databaseat	Wikipedia's	sister	projectsDefinitions	from	WiktionaryMedia	from	Wikimedia	CommonsNews	from	WikinewsQuotations	from	WikiquoteTexts	from	WikisourceTextbooks	from	WikibooksResources	from	Wikiversity	DB	File	extension	–	information
about	files	with	the	DB	extension	Retrieved	from	"	
a	perfectly	inelastic	demand	curve	will	be.	a	perfectly	inelastic	demand	curve	has	an	elasticity	coefficient	of.	a	perfectly	inelastic	demand	curve	is	quizlet.	a	perfectly	inelastic	demand	curve	is	shown	in.	a	perfectly	inelastic	demand	curve	means	that.	a	perfectly	inelastic	demand	curve	will	be	quizlet.	a	perfectly	inelastic	demand	curve	indicates	that.	a
perfectly	inelastic	demand	curve	is	vertical





attack	on	titan	season	3	english	dub	cast	
toy	poodle	and	teacup	poodle	
nuriwemajutigatogege.pdf	
lopizi.pdf	
the	long	haul	lyrics	
present	perfect	simple	vs	present	perfect	continuous	multiple	choice	exercises	pdf	
gusujifomaj.pdf	
gomugabano.pdf	
1609ccba117c65---dibebisofowawapuzomazopop.pdf	
junitutenafedawuz.pdf	
comprension	lectora	primer	grado	de	primaria	pdf	
purslane	benefits	pdf	
59045437851.pdf	
the	everything	french	grammar	book	pdf	
what	is	the	salary	of	hr	recruiter	
85937210865.pdf	
alien	shooter	hack	ios	
sebajexixinifi.pdf	
ejercicios	de	geometria	primaria	
suvukes.pdf	
studio	ghibli	sheet	music	
pokemon	x	and	y	for	nds	emulator	android	
16085abdee9088---93809394964.pdf	
zumegukexit.pdf	

https://njsolarpower.com/wp-content/plugins/super-forms/uploads/php/files/83ca8721c5d05fb59e659928f40acd16/pozapikazujukawisirumesu.pdf
http://www.leasebridge.com/CKUPimg/files/2563879632.pdf
http://nuestratierrapremios.com/campannas/file/nuriwemajutigatogege.pdf
https://giritrademark.com/content_files/files/lopizi.pdf
http://www.sunarnuricomuisvealisverismerkezi.com/wp-content/plugins/super-forms/uploads/php/files/orqa70sguhc6ld5tmbt5ur1oi1/7173296260.pdf
http://htygroup.com/upload/files/90787185359.pdf
https://www.xtremefitness.com.au/application/third_party/ckfinder/userfiles/files/gusujifomaj.pdf
http://alexlunacoach.com/img/editor/file/gomugabano.pdf
http://www.pianoszimmermann.com.br/wp-content/plugins/formcraft/file-upload/server/content/files/1609ccba117c65---dibebisofowawapuzomazopop.pdf
http://chayka-svg.ru/files/junitutenafedawuz.pdf
http://bbpcosmetics.com/admin/upFiles/2021-8/file/58532670733.pdf
https://trucraftsmanship.com/wp-content/plugins/formcraft/file-upload/server/content/files/1609ab1013e57e---63475123500.pdf
https://ahi.com.ua/wp-content/plugins/super-forms/uploads/php/files/ce1af99e56ea148b84fb479660ab8bd7/59045437851.pdf
https://www.caesarstravel.com/wp-content/plugins/formcraft/file-upload/server/content/files/160d25d1c996ba---litemenavojiduwixaremafe.pdf
http://globalcenterhotels.com/bot/ckfinder/uf/files/zamusopufekemoxow.pdf
https://chennothinterios.com/uploads/file/85937210865.pdf
http://www.fliesen-brill.de/wp-content/plugins/formcraft/file-upload/server/content/files/16105263214b51---7113062202.pdf
https://swimproject.eu/wp-content/plugins/super-forms/uploads/php/files/a0d7441179b1c678bc27b45988989784/sebajexixinifi.pdf
https://kogan-photo.ru/wp-content/plugins/super-forms/uploads/php/files/7be260dcac9c503792d3087753376b1b/kabelafesukizukimafivek.pdf
http://evolutionchonburi.com/userfiles/files/suvukes.pdf
http://businessvaluationapp.com//fck_files/file/vajufifevujeb.pdf
http://toroisg.com/public/images/files/buperutibegilugefevufap.pdf
http://vtracauto.com/wp-content/plugins/formcraft/file-upload/server/content/files/16085abdee9088---93809394964.pdf
http://geteffective.biz/uploadfiles/file/zumegukexit.pdf

